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Abstract. Return to disorder, and less frequently memory, have been demonstrated in various
disordered materials. In order to find the conditions necessary for the observation of these effects,
the evolution of the real partε′ of the dielectric constant of two disordered paraelectric crystals
K1−xLixTaO3 (KLT) has been extensively studied by the means of the capacitanceC(T , t) around
the beginning and the end of a temperature plateau. The return to disorder and memory effects
have not been seen in KTL, in contrast to what was recently observed in disordered ferroelectric
crystals KTa1−yNbyO3 of a similar family. The variations dC = P(T0, t0) dT +Q(T0, t0) dt in
the vicinity of the point(T0, t0) are split into a contribution depending on temperature only and an
isothermal contribution only depending on time. All the results of such an analysis of the features
observed in KLT can be explained by the domain wall model in its original form.

1. Introduction

Ageing is a phenomenon currently observed in many materials such as spin glasses, polymers,
structural glasses and so on. It seems that a necessary condition for its occurrence is disorder
and frustration. Ageing manifests itself by the slow evolution, depending on the history
of the sample, of some characteristics of the material. Examples of such time-dependent
characteristics are the complex magnetic susceptibilityχ of spin glasses (SGs) [1–3], the
static elastic compliances of polymers [4] and the complex dielectric constantε of disordered
dielectrics [5, 6]. In this last case, potassium–lithium tantalate K1−xLi xTaO3 (KLT) and
potassium niobo-tantalate KTa1−yNbyO3 (KTN) crystals have been extensively studied.

The comparison between the time-dependent properties of these two families of materials
is of the highest interest. Indeed, at low temperatures where the experiments are usually
performed, the KLT crystals are in the paraelectric phase while the KTN crystals are in the
ferroelectric phase. Does this difference induce different ageing properties?

A first answer is given by experiments on ergodicity breaking. If the phase space of a
system is split into several mutually inaccessible regions, the system may arrive at several
different equilibrium states according to the initial state where it is initially left. This is true
ergodicity breaking [7]. Phase transitions provide examples of such splittings. However, it
may happen that equilibrium is unique but the time necessary to travel from the initial state to
the equilibrium state is infinite for fundamental reasons. This is weak ergodicity breaking [8].
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Indeed, these two cases correspond to purely theoretical situations. In real materials, neither
the height of energy barriers in the phase space nor the number of traps are infinite.

Practically, for experimentalists, it is often difficult to assert if a long evolution (lasting
one year, for instance) is finite or infinite. Moreover, if the sample is imposed to start from
different initial states and is observed to arrive after a long time to different states, it is difficult
to decide if it would finally have reached a unique equilibrium state or not after a longer time.
Indeed, such an ambiguous situation (even complemented by numerical extrapolations) leaves
open the question of ergodicity or non-ergodicity. This is called effective ergodicity breaking.
From dielectric measurements it was found that both KLT crystals and KTN crystals showed
effective ergodicity breaking [6]. From this result we infer that the effect is not related to
paraelectricity or ferroelectricity. Finally, we notice that effective ergodicity breaking is an
experimental concept not incompatible with ergodicity (as paraelectrics must show); it is only
a question of time or patience.

In order to explain the KLT behaviour a model was proposed [9]. According to this model,
the time-dependent partδε(ω, t) of the alternative dielectric constant is attributed to the wall
motion of polarization domains growing in the tantalate lattice.

In a pure paraelectric compound, the polarization is an essentially fluctuating quantity,
which varies rapidly and permanently in time and space. It is only in the vicinity of the
para–ferroelectric phase transition that the movements of the polarized regions become slower
(critical slowing down). In the same time the size of these regions, called the coherence length
ξ(T ) of the polarization fluctuations, becomes larger and eventually diverges at the critical
point.

In contrast to the case of pure crystals, compounds such as KLT crystals contain a high
density of impurities acting as sources of static random fields at low temperatures. These
static fields hinder the flips of the lattice dipoles. As a consequence we may assume that,
instead of polarization fluctuations vanishing on a microscopic time scale, any deviation of the
polarization out of the equilibrium value (zero in this case) has a very long relaxation time. In
other words, the motion of the polarized regions turns out to be noticeable only after a duration
of the order of thousands of seconds because the wall which separates two such regions is
pinned near lattice sites occupied by polar impurities. Of course, the size of these regions is
limited by the temperature dependent coherence lengthξ(T ). A polarized region with such a
long lifetime is not essentially different from what is usually called a domain in a ferroelectric
phase. In this latter case the polarization domains are in principle infinite. However, when
their growth is hindered by static random fields their dynamics becomes very slow and their
size remains finite just as in the paraelectric case. In both cases whenδε(ω, t) is measured the
time evolution due to the slow motion of walls appears as quasi-static on the time scale of
the oscillating electric field. Moreover, the effect on the dielectric constant is proportional
to the total wall area. When the domain sizeρ increases towardsξ(T ) the individual area
increases asρ2. The number of domains is proportional toρ−3 and consequently the total area
decreases asρ−1. This is the expected behaviour. The assumption of proportionality ofδε

to the total wall area is probably not true (the response of an elementary area depends on its
angle with the oscillating electric field) but this is not important if the domain growth follows
a scaling law (during the evolution, all the lengths are multiplied by the same number).

Finally, in what follows we use the word domain in the extended meaning of very slowly
varying polarized regions in the paraelectric phase and their frontier, even if it is fuzzy, is called
a domain wall.

Recently, two unusual effects were observed in the ferroelectric phase of KTN crystals
[10]. A regular cooling at the rate dT/dt = −r is interrupted by an isothermal evolution or
plateau at the temperatureTpl . At this temperature ageing manifests itself by the decrease of
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the realε′ and imaginaryε′′ parts of the dielectric constantε = ε′ − iε′′. This evolution tends
necessarily towards more stability and thus more order. If cooling is then resumed at the same
constant rate−r, the two partsε′ andε′′ first increase, thus indicating some return to disorder
(although the temperature is lowered). This is the first effect. If cooling is carried on down to
low temperatures and followed by a steady heating at the opposite rate +r, minima ofε′ and
ε′′ are observed when passing back through the temperatureTpl . This means that the sample
has kept some memory of the hole which was dug in the dielectric constant by ageing at this
temperature. This permanent memory can be erased by annealing. This is the second effect.
We emphasize that memory does not mean that some signal has not yet achieved its monotonic
relaxation towards fading. In fact, it is an effect localized in temperature (aroundTpl) which
is nonmonotonic in time when the temperature is regularly increased.

The three effects (ageing, return to disorder, memory) just mentioned deserve more
comments. Ageing is very frequently observed in disordered materials [1–6]. Return to
disorder is rather frequent: it was observed in a wide range of cases such as the ferroelectric
lock-in phase of Rb2ZnCl4 [11], in the SG phase of CdCr1.7In0.3S4 [12], in KTN [10], in
Plexiglass (PMMA) [13] and in both phases (SG and ferromagnetic) of CdCr1.9In0.1S4 [14].
Memory is less frequent: it exists in the modulated phase of thiourea [15] and in Plexiglass but
not in Rb2ZnCl4; it is present in the SG phase of CdCr1.9In0.1S4 but not in its ferromagnetic
phase; it is clearly seen in the ferroelectric phase of KTN.

Obviously, a rule is missing which would allow us to predict whether a disordered material
will show return to disorder and memory or not. In this context the study of the KLT series
may be very helpful because many results about ageing in these materials are already available
and because these crystals belong to a family close parent of the KTN series which presents
the memory effect.

In the present article we report on an extensive study of the evolution of the dielectric
constant after a plateau and on a search for memory and return to disorder in KLT. Our main
point is that we have found no trace of memory and return to disorder, but we have checked
that our results are well described by the domain model in its original form.

2. Experiments

The pure potassium tantalate KTaO3 crystal is a cubic perovskite. It is an incipient ferroelectric:
the ferroelectric transition it would undergo at 0 K is aborted, due to quantum fluctuations.
However, the real partε′ of the dielectric constant strongly rises as the temperature is lowered
since the correlations between the displacements of the tantalate ions increase. The random
substitution of Li+ ions for K+ ions in a KTaO3 crystal has two consequences. Firstly, the Li+

ions take off-centre positions and generate electric dipoles at random sites. The subsequent
random interactions induce the freezing of the dipoles below some transition temperatureTtr
if the Li+ concentrationx in the crystal K1−xLi xTaO3 is larger than 0.01 [16–18]. Secondly,
the trend of the tantalate lattice towards ferroelectricity is attenuated but the real partε′ of its
dielectric constant is still increasing when the temperature decreases. This is the signature of
growing domains of fluctuating polarization. The slow dynamics and ageing observed in KLT
are attributed to the motion, hindered by the static random fields generated by the frozen Li+

ions, of the walls of these polarization domains of the tantalate lattice [9].
Using a Hewlett–Packard 4192A impedance analyser, we have measured the electric

capacitance at seven frequencies, ranging from 1 kHz to 1 MHz. It can easily be transformed
into the real partε′ of the complex dielectric constant. In KLT the dielectric loss is very weak
and the imaginary partε′′ is unusable. The dielectric constantε(ω, t) was measured as a
function of time while the sample temperatureT (t) was a controlled function of time.
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In KLT the freezing temperatureTtr of the dipoles is related to the lithium concentration
x by the lawTtr (x) = 535x2/3 [19]. The curveTtr (x) separates the paraelectric region and
the glassy region in the phase diagram. For the experiments reported here, two samples with
lithium concentrationsx = 0.017(Ttr = 34K) andx − 0.025(Ttr = 45K) were used. In
the former, since the lithium concentration is lower, ferroelectricity is less hindered and the
dielectric constant (and the capacitance) is much larger than in the latter at low temperatures.
The typical sizes of the samples were 4× 4× 6 mm3. Chromium electrodes were deposited
on the largest faces.

All our experiments begin by an annealing near 50 K and an initial rapid cooling across
the transition temperatureTtr down toTmax

∼= 20 K. Then several procedures were used.
They were composed of a cooling at a constant rate dT/dt = −r, a heating at the opposite rate
dT/dt = +r and a temperature plateauTpl . These three components were combined in different
manners explained in detail in subsection 3.2. Three temperatures play particular roles: the
minimum temperatureTmin

∼= 4.8 K (slightly above the liquid helium temperature),Tpl and
Tmax . The curves recorded at different measuring frequencies are similar. Consequently, we
only present our data at 100 kHz. The measurements are generally performed at the rate of
one point every 19 s with the temperature change equal either to 0 (plateau) or to±0.06 K;
this gives heating and cooling rates withr = 0.0032 K s−1. The steps are small enough to
draw quasi-continuous curves and to deduce the slopes needed for our analysis.

3. Analysis of the data

3.1. Method

We have studied differential variations of the capacitanceC(T , t) in the vicinity of several
remarkable points(T0, t0) in the (T , t) space. TakingC(T0, t0) as reference, the deviation
from this value is dC = C(T0 + dT , t0 + dt)−C(T0, t0). For infinitesimal changes, we assume
that dC is the sum of an instantaneous change proportional to dT and of a decrease due to
ageing, proportional to dt . This reads

dC = P(T0, t0) dT +Q(T0, t0) dt. (1)

The coefficientsP(T0, t0) andQ(T0, t0) are the partial derivatives ofC(T , t) with respect to
T andt . They are related to the slopes of the curves ofC(T , t) in the vicinity of (T0, t0). The
coefficientP depends on temperature and possibly on time; it is negative for a paraelectric
material such as KLT. The coefficientQ is generally negative and it depends on temperature. Its
absolute value obviously decreases with time: isothermal ageing becomes slower and slower.

The two coefficientsP andQ of equation (1) can generally be determined by two paths
in the(T , t) space between the point(T0, t0) and two other different points(T0 + dT , t0 + dt).
If one or two other paths are available, they provide an independent determination of one or
two of these coefficients. This is a check of our assumptions.

The constant derivativer = dT/dt is the temperature change rate. It is writtenrc for
cooling (rc < 0) or rh for heating(rh > 0); in our experimentsrc = −rh and, obviously
r = 0 during the plateau. Since in our experiments dT and dt are proportional we put
Q̃(T0, t0) = Q(T0, t0)/|r|, and hereafter we conventionally measure the isothermal variations
and the isochronous variations with the same units (in pF K−1). On the same footing, we can
write P̂ (T0, t0) = P(T0, t0) + Q̃(T0, t0), the effective (or total) derivativêP of C with respect
to T .

We take as time origin the instant when the plateau temperatureTpl is reached. Therefore,
the beginning of the plateau corresponds tot0 = 0 and the end tot0 = tpl , with tpl = 10 000 s.
The plateau temperature isTpl = 11.15 K.
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Figure 1. Schematic representation of the four thermal histories used in our experiments. The
different procedures are:

(i) path ca-1 + path ha-1: cooling fromTmax
∼= 20 K downTpl = 11.15 K and subsequent

heating fromTpl up toTmax ;
(ii) path ca-1 + plateau atTpl + path ha-2: cooling fromTmax downTpl , isotherm and heating

from Tpl up toTmax ;
(iii) path ca-1 + path cb-1: cooling fromTmax down toTmin

∼= 4.8 K;
(iv) path ca-1 + plateau atTpl + path cb-2: cooling fromTmax down toTpl , isotherm and cooling

from Tpl down toTmin.

The different paths in the(T , t) space are referred according to the following notation.
The points(Tpl, 0) and(Tpl, tpl) are respectively called points 1 and 2. The letters c and h
mean cooling and heating while the letters a and b mean above and below, respectively. An
isothermal path is labelled by pl. Hence, for instance, path ca-1 leads to point 1 by cooling
from above while path pl-2 arrives at point 2 along the plateau. The possible paths passing
through points 1 and/or 2 are drawn in figure 1.

The four different procedures used were the following sequences:

(i) cooling fromTmax to Tpl (path ca-1) + heating fromTpl to Tmax (path ha-1);
(ii) cooling from Tmax to Tpl (path ca-1) + plateau atTpl + heating fromTpl to Tmax (path

ha-2);
(iii) cooling from Tmax to Tmin (path ca-1 + path cb-1) + heating fromTmin to Tmax ;
(iv) cooling fromTmax to Tpl (path ca-1) + plateau atTpl + cooling fromTpl to Tmin (path

cb-2) + heating fromTmin to Tmax .

In the following study we focus our attention around points 1 and 2 in the(T , t) space.

3.2. On the plateau

We have first examined the isothermal(r = 0) variation ofC(T , t). An example is displayed
in figure 2 which clearly shows that the capacitance decay becomes slower and slower. The
measurements have been made in the vicinity of its beginning and of its end. The corresponding
paths pl-1 and pl-2 in the(T , t) space are

(Tpl, 0)→ (Tpl, δt) and (Tpl, tpl − δt)→ (Tpl, tpl)

and the capacitance deviations are respectively

dCpl-1 = C(Tpl, δt)− C(Tpl, 0) = Q(Tpl, 0)δt < 0 (2)

and

dCpl-2 = C(Tpl, tpl − δt)− C(Tpl, tpl) = −Q(Tpl, tpl)δt > 0. (3)
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Figure 2. Isothermal decay (lasting 10 000 s) of the real part of the capacitance recorded at 100 kHz
in a K1−xLixTaO3 sample withx = 0.017. The displayed data are a part of procedure (iv), cooling
from Tmax down toTpl , isotherm and cooling fromTpl down toTmin.

We have measured for the sample withx = 0.017 concentration

Q̃(Tpl, 0) = −(0.050± 0.003) pF K−1 and Q̃(Tpl, tpl) = −(0.011± 0.0015) pF K−1

and for the one withx = 0.025 concentration

Q̃(Tpl, 0) = −(0.025± 0.003) pF K−1 and Q̃(Tpl, tpl) = −(0.005± 0.001) pF K−1.

3.3. Above the plateau temperature

Now we examine the paths ca-1, ha-1 and ha-2 which are aboveTpl .
On the one hand, we have

path ca-1 (Tpl + δT ,−δt)→ (Tpl, 0) (r = rc)
path ha-1 (Tpl, 0)→ (Tpl + δT , δt) (r = rh).

The corresponding capacitance changes are

dCca-1 = C(Tpl + δT ,−δt)− C(Tpl, 0) = P(Tpl, 0)δT −Q(Tpl, 0)δt (4)

dCha-1 = C(Tpl + δT , δt)− C(Tpl, 0) = P(Tpl, 0)δT +Q(Tpl, 0)δt. (5)

In thex = 0.017 concentration sample the following values were obtained

P(Tpl, 0) = −(0.545± 0.005) pF K−1 and Q̃(Tpl, 0) = −(0.050± 0.005) pF K−1

and for the sample withx = 0.025 concentration

P(Tpl, 0) = −(0.225± 0.005) pF K−1 and Q̃(Tpl, 0) = −(0.025± 0.005) pF K−1.

We notice that the values obtained here forQ̃(Tpl, 0) are in very good agreement with
those previously obtained along the plateau.

On the other hand, there is

path ha-2 (Tpl, tpl)→ (Tpl + δT , tpl + δt) (r = rh).
The corresponding capacitance change is

dCha-2 = C(Tpl + δT , tpl + δt)− C(Tpl, tpl) = P(Tpl, tpl)δT +Q(Tpl, tpl)δt. (6)
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(a)

(b)

Figure 3. Difference between the real parts of the capacitances of a K1−xLixTaO3 sample and
their appropriate references, shown as a function of the temperature. Data has been recorded at
100 kHz in a (x = 0.017) sample during the following two thermal sequences.

(a) Cooling fromTmax
∼= 20 K down toTpl = 11.15 K, isotherm for 10 000 s and heating from

Tpl up toTmax . Reference: path ca-1 + path ha-1.
(b) Cooling fromTmax down toTpl , isotherm and cooling fromTpl down toTmin. Reference:

path ca-1 + path cb-1.

The only difference between the thermal histories of paths ha-1 and ha-2 is the plateau. With
the values previously found for̃Q(Tpl, tpl), we obtain for thex = 0.017 concentration sample

P(Tpl, tpl) = −(0.55± 0.01) pF K−1
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and for the one withx = 0.025 concentration

P(Tpl, tpl) = −(0.25± 0.01) pF K−1.

The comparison with our preceding results show thatP(Tpl, tpl) = P(Tpl, 0), within
experimental accuracy. We conclude that the coefficientP(Tpl) does not depend on time.
Consequently, the difference of slopes between the paths ha-1 and ha-2 must be

P̂ (Tpl, tpl)− P̂ (Tpl, 0) ∼= −0.04 pF K−1

P̂ (Tpl, tpl)− P̂ (Tpl, 0) ∼= −0.02 pF K−1

for x = 0.017 andx = 0.025 samples, respectively. This is confirmed by figure 3(a) where
we find(0.045± 0.005) pF K−1 for the first sample. This is a check of the coherence of our
method.

This result, valid for the initial slopes just aboveTpl , also explains why the two curves
relative to the paths ha-1 and ha-2 tend to merge together: along the path ha-1 the system is
young (the domains are rather small and therefore able to grow rapidly) while along the path
ha-2 the system is old (the domains have grown during the plateau and their motions have
become slow).

3.4. Below the plateau temperature

Now we examine the paths cb-1 and cb-2 which are belowTpl . The plateau is the only
difference between their thermal histories. They are

path cb-1 (Tpl, 0)→ (Tpl − δT , δt) (r = rc)
path cb-2 (Tpl, tpl)→ (Tpl − δT , tpl + δt) (r = rc).

The corresponding capacitance changes are

dCcb-1 = C(Tpl − δT , δt)− C(Tpl, 0) = −P(Tpl, 0) δT +Q(Tpl, 0) δt (7)

dCcb-2 = C(Tpl − δT , tpl + δt)− C(Tpl, tpl) = −P(Tpl, tpl) δT +Q(Tpl, tpl) δt. (8)

From the preceding results we are able to predict that the effective slopes must be

P̂ (Tpl, 0) = −(0.495± 0.01) pF K−1 and P̂ (Tpl, tpl) = −(0.535± 0.01) pF K−1

P̂ (Tpl, 0) = −(0.23± 0.01) pF K−1 and P̂ (Tpl, tpl) = −(0.25± 0.01) pF K−1

for the two samples.
Moreover, the difference of slopes between the paths cb-1 and cb-2 must be

P̂ (Tpl, tpl)− P̂ (Tpl, 0) ∼= −0.04 pF K−1

P̂ (Tpl, tpl)− P̂ (Tpl, 0) ∼= −0.02 pF K−1

for the samples withx = 0.017 andx = 0.025, respectively. This is confirmed by figure
3(b) where we find(0.037± 0.005) pF K−1 for the first sample. This is another check of the
coherence of our method.

Here too, this result, valid for the initial slopes just belowTpl , also explains why the two
curves relative to the paths cb-1 and cb-2 tend to be parallel: when the temperature decreases
the ageing process steadily slows down and the difference of ageing velocity between a young
system (without any plateau) and an old system (after the plateau) becomes weaker and weaker
and finally vanishes.
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Figure 4. Difference between two real parts of K1−xLixTaO3 (x = 0.017) capacitance, both
recorded during heating fromTmin up toTmax at 100 kHz, shown as a function of temperature. In
one of the procedures, taken as reference, the sample is cooled fromTmax down toTmin at constant
rate. In the other one, the sample is first cooled fromTmax down toTpl at the same rate, then
isothermally evolves atTpl for 10 000 s and finally is cooled down toTmin. In the inset the same
quantity is shown for KTa1−yNbyO3 (y = 0.027) obtained under similar conditions.

3.5. FromTmin to Tmax

Figure 4 shows, as a function of temperature, the difference between two curves both recorded
during heating fromTmin toTmax . One followed a cooling interrupted by a plateau atTpl while
the other, taken as reference, followed a regular cooling (without plateau) fromTmax to Tmin.
The difference monotonically increases from a negative value due to ageing atTpl and tends
towards 0 near transition temperatureTtr . This monotonic behaviour is clearly in contrast with
that observed for KTN [10] (see inset in figure 4) where a dip nearTpl indicated the memory
of ageing occurred during the plateau. There is no such memory in KLT.

4. Discussion

Memory and return to disorder which have been observed in many materials, and in particular
in KTN, do not appear in KLT. One could infer that the difference of behaviours of these
two materials probably lies in the nature of the low temperature phases which are paraelectric
(disordered) for KLT and ferroelectric (ordered) for KTN. Unfortunately, this simple idea is
probably wrong, as shown by the experiments on CdCr1.9In0.1S4 where the scheme is inverted
since memory is present in the SG (disordered) phase but not in the ferromagnetic (ordered)
phase. Therefore, the best we can do is to add our (negative) result to the list displayed in
section 1.
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Besides that, we have done an extensive study of the evolution of the dielectric constant
of KLT after controlled cooling to a given temperature, followed or not by a plateau at this
temperature, and the subsequent cooling or heating. Two main results were obtained.

The first point is the coherence of the whole set of our results which validates the proposed
splitting of the evolution of the KLT into two independent parts defined in equation (1). The first
component (proportional toP ) is a function of the temperature and is found to be quasi-
independent of time and possibly independent of the cooling rate. The second component
(proportional toQ) is a decreasing function of time.

The second point is a new argument in favour of the model which has recently been
proposed [9]. In this model the time evolution of the dielectric constant is attributed to
the slow movement of polarization domain walls, hindered by static random fields (SRFs)
generated by the frozen Li+ ions. The set of SRFs which slows down the growth of a domain
may be represented by an equivalent barrier height that the domain wall has to jump over.
Due to the randomness of the Li+ sites, there is a broad barrier distribution. Three types of
domains can be distinguished, according to their behaviour after a perturbation: (i) the very
fast domains (with low barriers) which respond immediately; (ii) the very slow domains (with
high barriers) which are not able to respond; (iii) the intermediate domains (with intermediate
barriers) which are able to follow (more or less) the perturbation. Obviously, these dividing
lines are relative to a given temperature and to some characteristic experimental time (the
duration of an experiment, for instance). Clearly, the intermediate domains are responsible
for isothermal ageing: they are at the origin of the observed decay ofε′ (andC) represented
by the coefficientQ. The very slow domains do not evolve at the plateau temperature; they
only change the asymptotic behaviour ofε′ in accordance with the sample thermal history
and therefore they cause ergodicity breaking. The fast domains can instantaneously follow a
(reasonable) temperature change. Their surface, together with the domain volume, provide the
instantaneous variationε′ (andC) represented by the coefficientP . In such a scheme, based
on the partition into the three types of domain, this coefficient is only weakly dependent on
the thermal history. Our experiments cannot exclude such a weak dependence on the cooling
rate.

Finally, the overall agreement of our results on KLT with the domain model supports the
appropriateness of this simple description. In particular, it shows that a domain is correctly
and sufficiently well described by the single parameter which characterizes its size. More
precisely, the dielectric properties of a domain are related to the mean area calculated with
the mean value of its radius. This shows that it is not necessary to introduce two or three
lengths to describe the domain shape or to take into account some irregularities on the surface
(then the standard deviation of the radius would not be negligible in comparison with its mean
value). Since KLT and KTN crystals originate from the same KTaO3 lattice, it is quite natural
to compare them. A quantitative discussion of their differences (especially concerning return
to disorder and memory) probably passes through a better understanding of the role of the SRF
(due to Li+ in KLT and Nb5+ in KTN) and through the evaluation of microscopic parameters
such as barrier height and relaxation time.
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